解比例是指在一个等比数列中,我们可以通过已知比值来求解未知比值的操作。解比例的计算可以通过以下方式进行:
1. 已知相邻两项的比值和其中一项的比值,求其他项的比值:
设等比数列的首项为 a,公比为 r,已知第 n 项与第 n+1 项的比值为 x,已知第 m 项与第 n 项的比值为 y,需求第 k 项与第 m 项的比值。
根据等比数列的性质知道:第 n 项与第 n+1 项的比值为 r,即 a[n] / a[n+1] = r。
这里可以列出以下等式:
a[n] / a[n+1] = x -------- (1)
a[m] / a[n] = y -------- (2)
a[n] / a[n+1] = r -------- (3)
a[n+1] = a[n] / r -------- (根据(3)式得到)
结合式(1)和(3)得到: a[n] = x * a[n+1]
将式(1)和(2)带入,得到:
x * a[n+1] / a[n] = y
x * (a[n+1] / a[n]) = y
x * (1 / r) = y
a[n+1] / a[n] = y * r
原等式为 a[m] / a[n] = y
可得到:a[m] / a[n] = y * r
因此,第 k 项与第 m 项的比值为 y * r, 即 第 k 项 / 第 m 项 = y * r。
2. 已知第 n 项与第 n+1 项的比值和已知项数,求公比:
设等比数列的首项为 a,已知第 n 项与第 n+1 项的比值为 x,已知项数为 N,求公比 r。
根据等比数列的性质,我们知道:第 n 项与第 n+1 项的比值为 r, 即 a[n] / a[n+1] = r。
这里可以列出以下等式:
a[n] / a[n+1] = x -------- (1)
a[n+1] = a[n] / r -------- (2)
将式(2)带入(1),得到:
a[n] / (a[n] / r) = x
(a[n] * r) / a[n] = x
r = x
因此,已知每两项的比值和项数,可以直接得到公比 r。
以上是计算解比例的两种常见情况,具体问题需要具体分析、处理。希望对你有所帮助!
本文转自:新华日报 本报讯 (记者 付奇) 11月12日,由中国农药发展与应用协会、中国农药工业协会联合主办的中国农化智能制造高峰论坛在常州市金坛区举行。,
,这并非是对她个人的过分要求,而是明星这个身份所带来的责任和义务。
政协委员们现场视察了市公安局监管中心、反诈中心、东茅岭派出所等地。,最后,就是继续保持热爱,组织好银滩航模队,精进飞行技能。